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N O N S T A T I O N A R Y  D I F F R A C T I O N  O F  

E L A S T I C  W A V E S  O N  A R I G I D  E L L I P T I C A L  C Y L I N D E R  

N. I. Alexandrova UDC 539.3 

Extensive literature has been devoted to the problems of diffraction of elastic and acoustic waves by 
inclusions with circular cross-sections (see reviews [1-3]). The problems of the interaction of elastic waves with 
extended inclusions having elliptical cross-sections have been less investigated. One approach to the solution 
of such problems is the classical approach based on the method of expansion in terms of eigenfunctions. The 
scattering of scalar SH-waves on an elliptical cylinder has been studied by means of expansion in terms of 
the Mathieu's function in [4-6]. In the case of diffraction of P- and SV-waves, the vector wave equation is 
not split in elliptical coordinates by using the Mathieu's functions because of the existence of two different 
speeds of elastic waves, as was noted in [3, 7, 8]. Therefore, other methods for solving the problems with 
P- and SV-waves are employed in the majority of works [7-16]. For example, the solution is constructed by 
the method of scattering matrices [7, 8] or by using the method of finite-difference approximation of contour 
integrals [9]. The solution is sought in the form of the Papkovich-Neuber potentials [10], and the methods of 
the theory of complex variable functions [11] and the method of neighboring characteristics are employed [12, 
13, 15]. In [14], the problem is solved with the help of Mathieu's functions. An infinite system of equations 
for determining an infinite number of unknown coefficients is obtained which is solved numerically. 

An analysis of the literature shows that  the major part of the works is devoted to the investigation of 
diffraction of harmonic and stationary waves by elliptical obstacles [7-14]. The nonstationary interaction of 
longitudinal waves with an elliptical cavity has been studied with the help of Debye radial series in [16], where 
numerical results obtained by using a simplified computation scheme are presented. No detailed investigation 
of the nonstationary diffraction of plane P- and SV-waves on elliptical obstacles has been carried out. Also, 
simple analytical estimates of the solution of such problems are lacking. 

This paper proposes an approximate approach to the separation of variables in the equations of linear 
elasticity theory for a problem with an elliptical boundary under the action of plane elastic waves. The 
approach is demonstrated in the solution of nonstationary problems of diffraction of elastic waves by a rigid 
inclusion. The asymptotic stress values (t ---+ 0% t is time) at the cylinder surface are found approximately. 
It is shown that  in the particular case of a round cylinder this approach leads to the exact solution of the 
problem. 

S t a t e m e n t  of  t h e  P r o b l e m .  The problem on the influence of plane P- and SV-waves on an infinitely 
long rigid cylinder surrounded by an elastic medium is investigated. The cylinder has an elliptical cross section. 
The plane statement of the problem is considered: the front of the incident wave is parallel to the cylinder 
axis. The direction of movement of the incident wave makes an angle 0 with the major axis of the ellipse 
(Fig. 1). In the (x ' , y ' )  coordinate system rotated through an angle 0 -  ~r/2 to the ( x , y )  coordinates, the 
stresses in the incident wave are given in the following way: 

o'~ -o ' lH0(zl) ,  0 -- O'leH0(:l). o --. - u l ( 1  - g), (1) ~r~, z, -- -o'2H0(z2), zi -- cit - al + y', e O'x.ty! 

where H0 is a Heaviside unit stepfunction; or1, O~2 a re the  stresses at the front of the incident longitudinal and 
transverse waves, respectively; the incident wave propagates in the yl direction; v is the Poisson coefficient; 
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ca is the speed of expansion waves; c2 is the speed of shear waves; and al is the major semi-axis ot the ellipse. 
Let us introduce an elliptical coordinate system associated with the cylinder: 

x=acosh~cosT / ,  y = a s i n h C s i n r /  ( 0 ~ C < o r  0 ~ 7 / ~ 2 7 r )  

(2a is the distance between the two foci of the ellipse). The value C = C0 corresponds to the cylinder surface. 
The movement of the elastic medium is described by two-dimensional wave equations for the scalar qr and 
vector ~b potentials of the displacements: 

~  = c ~ ,  02r = ~ r  c~ = ~c~, ~ = (1 + ~)/2 (2) 
Ot 2 Ot 2 

(A is the Laplacian). The potentials qa and ~b must be nonzero in the expanding region limited by the 
perturbation front and equal to zero outside this region. 

The separation of the problem into direct and additional problems Y2 = y0 + y1 (y0 are components 
of stresses and displacements in the incident wave and y1 corresponds to the reflected and diffraction waves) 
is usually used in linear diffraction problems. 

The conditions of absence of displacements are set at the surface of the rigid cylinder 

O.at. 1 = 0 (C = ~'0) (3) 

(uc, u n are the normal and tangent displacements). At t = 0, we have zero initial conditions. 
To solve the problem, we apply Laplace's transform in time with parameter p to Eq. (2) and to the 

boundary conditions (3): 

p 2 ~ l L  = Cl2A~21L, p 2 r  = c22Ar (4) 

oL ~L =o (C=Co). (5) u~- L + ~,~ = o, ~,,~ + u,, 

Since Eq. (4) with conditions (5) in the elliptical coordinate system cannot be separated because of the 
existence of two speeds of perturbation propagation [3], it is necessary to pass from the elliptical coordinate 
system (C, 7/) to the cylindrical coordinate system (r, a)  in accordance with the relations 

r 2 = a2(sinh2ff + cos 2 r/), w = cosh C cos 7/cos 0 + sinh C sin 7/sin 0 = re -~ cos(0 - a). (6) 

The relation between the stresses and displacements in different coordinate systems has the form 

or162 = o.,.,o,~ + o,,,,,,~ 2, + 2 o , , o , ~ ,  ,,,,,, = O r r ~  + o',~,~ + 2 ~ , ~ ,  (7) 
O'ct / = O'rrOtlO~2 + O'aa/~l/~ 2 + O'ret(O~l/~ 2 + O~2~1) , U(: = ZtrO~ 1 + Ua/~l,  U~/ ~-- U r a  2 + Zta/~2, 

where 

ax =/32 = J,c ; /31 = - a 2  = Jm ; J = a2(sinh2C + sin2 r/); J0 = J~ + j 2 .  

Here and below, the comma in the index meaus differentiation with respect to the corresponding argument. 
The expression of stresses and displacements in terms of the potentials ~ and ~ in the cylindrical coordinate 
system is written as follows: 

cra~ = 2c p 3 qv - D2 , ur  = qa,r + ~),~ r, ua  = ~,~ r - w. ,r, 

where p is density of the elastic medium and D1, D2, D3 are operators: 

D l ( f i )  = A f i  - r f i , r  -- f i ,a~,  D 2 ( f i )  = r f i , r a  - ~ f i , ~  (i = 1,2), 

D3(~) = - D i ( ~ )  + (1 - e )A~/2~,  d 1 = 1 / ~ ,  d 2 = 1, f l  = ~ .  f2  = r  

Substituting (8) into (7), for stresses and displacements in the elliptical coordinate system, we obtain 

, ( 9 )  
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Fig. 1 Fig. 2 

ttr [ J ( (~ , r  + ~ , a / r )  -t- J , 0 ( ~ , a / r -  ~ ) , r ) ] / ~ 0 ,  ttT/ = [ J , ( (99 ,~ / r -  ~b,r) - J,7/(~,r --}- ~ , a / r ) ] / ~ 0 .  

Here 

Bl(fi)  = bBll(fi) + dB12(fi); B2(fi) = dB21(fi) - bB22(fi); B3(cp) = -B1(99) + (1 - c)JoA~/2ze; 

1 b, A l f i , r  + 1 1 l f i , r + _ ~ f i , ~ ;  Bll(f i)  = -~-~ fi + -~fi,aa; B21(f/) = - - ~ A f / +  

1 1 2 _ j2.  d = 2J, oJ,r bl = (~J~ - J~)/~e; b2 b. B22(fi) = B12(fi) = rfi,r,~ - ~.2fi,a; b = J,,, ,r = 

The image of the potentials ~ and r in the incident wave has the form 

qo~  3, ~b~ Wi=exp(paw/ci) ,  A i=exp ( -pa l / c i ) .  (10) 

We expand the functions Wi into a series in terms of modified Bessel functions [17]: 

 0=1, (It) 
n = 0  

The solution of the wave equations (4) in the cylindrical coordinate system with allowance for the 
absence of radiations at infinity is represented in the form 

oo 

~IL= E Kn(* l ) [Clnc~176  Slns inn(O-~ 
.=o (12) 

c<) 

r = ~_. K.(52)[C2,,cosn(O-a) + S2. sinn(O -~1] ,  
n=O 

where Kn are the MacDonald functions of the nth  order and Cln, C2n, Sin, S2n are unknown coefficients. 
In order to satisfy the boundary conditions (5), we substitute (9)-(12) into (5) and obtain a system 

of two linear equations for the coefficients Cln, C2~, Sin, S2n (n = 0 , . . . ,  ~ ) .  Since this system is valid for 
an arbitrary angle 0 and the functions sin, cos are orthogonal on the interval [0, 27r], each term at sinn0 and 
cos nO must be equal to zero. As a result, we have, for each n, a system of four equations for the coefficients 
C1., C2n, $1,,, S2,~: 

{ " n ' = { K: , l ' lS ln+Kn,2nC2n=72nln,2n,  I(n,1 Cln - Kn,2~2S2n 7lain,In, 
KIn,l(~lCln - Kn,2nS2n 71nI~,161, K,,InSIn + Kln,2*2C2n = 72nltn,2(~2, (13) 

Kn,i = K,(~i), In,i = In(6i), 7in = Aiaien/PP a, ~i = rp/ci, r = a~sinh2(0 -t- cos 2 71. 

Here the prime denotes differentiation with respect to the argument. It is seen from (13) tha t  the coefficients 
Cln, C2,, $1,, $2~ are functions of a. Strictly speaking, in this case formulas (12) do not give the exact 
solution to problem (4)-(5). However, if we neglect the derivatives of the functions C~,, C2n, Sin, $2~ with 
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respect to a, we believe that  formulas (12) with the coe~cmnts t~ln, C,2n, Din, D2n cte~ermmeu t tum t ie)  /~vc 
an approximate solution to the boundary value problem (4), (5). 

Solving system (13) and substituting its solution into (12) and then into (9), and making some successive 
simplifications, we obtain an approximate image solution for the total stresses at the surface of the rigid 
elliptical cylinder: 

oo oo o~ 
= o . E L  E L  E L  = aOhn' = E EL 

n = 0  n = 0  n = 0  

aELcGn -- Joonpen [cos n(0 - a)(-alglaebl~2Ktn2, - a2Z2d~lKtn,1) 

+ s i n n ( 0 - o t ) ( - a l a l d n K n , 2  + a2a2~eblnKn,a)], 

aELr = Joan---"--Pen [cos n ( • -  ot)(-o'lal~d~2Ktn,.~. + o'2A2b~lgtn,1) (14) 

aE L en(1 - ~)[cosn(0 ot)aaaag2Ktn,2 sinn(0 o~)o'2A2nKn,1] a EL . . . . .  r162 ~ ,n  ~n-P 

~n _Kn,lKn,2n2 , r/t r/t r5 "1-XXn,l-'Xn.2 1 2. 

It seems impossible to represent expressions (14) in explicit form. Let us study the asymptotic behavior 
of the stresses at the cylinder surface a long t ime after the beginning of the process (t ~ cr which corresponds 
to p ~ 0 in the image space. It is shown in [18] that if the asymptotic behavior of the image has a singular 
point of an algebraic-logarithmic type as p ~ 0: 

fL(p) ..~ _pk / lnp  (k # O, 1,2, . . . ) ,  

then, as t ~ cr the asymptotic behavior of the original has the form 

t-k-1 
f( t)  ..~ ( - k -  1)!lnt" 

A plot of the function f ( t )  at k = - 2  is given in Fig. 2. 
Assuming that  p is smM1, we retain the first terms in the expansions of Bessel functions. The  asymptotic 

behavior of the function f ( t )  at k = - 2  is used for n = 1. As a result, we obtain an approximate asymptotic 
representation for the total stresses at the surface of the rigid inclusion: 

a~r (alblO~+o'2d)/go, o'~,,o = (o ' ldoe-a2b) /J  O. o'~,,o = (alb3~e-o'2d)/Jo, 

2 t 2c25, 
ar162 = l=(t/~) s- j  [c~176 a~bl~/cx +a, ,qc~)+s in(O- ,~) ( -~d /c~  + a, bx~/~,)], 

~ ' ~46[~o~(0-~)(~,~/~,-~b/,~)+sinI0-~/(~ab/~1+ ~d~/,~)], 
Cn,a - ln(t/fl) Jor 

,,-~,,2 = ~,~[,:o~ ~(o- ~)(~.,b,~ +,,.2,~) + s~,, ~(o- o) (-o-,,~ + o-~,,) ~]/.,,o, 

,,-~,,,~ = ~,~ [,:o, ~.r ~)(,,, ,~-,,-2b) +,in ~r + o-~,~),,,]/..,o, 

a~,~, 2 = 25[cos 2 ( 0 -  cO(aabz~e 2 - a 2 d ) +  sin 2 ( 0 -  o0 (o'ld --~ a2b3) ~ ) ] / J0 ,  

s = 0 ,  a s = 0 ,  z = 0  (n>13),  /3-2c~ze~/2" +ze) '  ze ar162 O~,n %~,- ( -~----  bs - 
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(C = 1.781072418... is the Euler constant [17]). The asymptotic behavior of stresses in the reflected and 
diffraction waves has the form 

O.1 1 ( ) " ( ) ( r  = o- lbee+o-2d/Jo ,  o-~,l,o o - l d ~ - o - 2 b  / J0 ,  0-1 _ f i e  o.1 = f i e  1 E ((,1 ((,1, (,hl O/,1' o-r/r/,1 = 0-7/~/,1, 

O'1r : (~e--1)~[COS 9(0 - -  o ~ ) ( o - l b 4 ~ e - - ~ - o ' 2 d ) - { - s i n 2 ( O  - 6z) (o-ld,~e - 0"254)]/,]0 , 

0.~o,2 = ( e e - 1 ) ~ [ c o s 2 ( O - a ) ( o - l d e e + o . 2 b ) + s i n 2 ( O - a ) ( - o - l b o e + o . 2 d ) ] / J o ,  (16) 

0.10,2 : (oe- -1)$[cos2(0-o~)(o ' lb5oe+o '2d)+s in2(O-o~)( -o ' ldee+o '2b5)] / Jo ,  

~4 = J} + 3 4 ,  b~ = 3& + 4 .  

Let us consider a particular case. Let the ellipse tend to the circle (a --~ 0, (0 --'+ c~, a sinh (0 ~ R, a cosh r ---* 
R; R is the radius of the circle). Then from (15), we find an asymptotic solution to the problem of diffraction 
of elastic waves by a rigid round cylinder, coinciding with [16]: 

Z E E E 
o-rr, O ----- --(7"1," o-r~,O -'~ 0-2, o-c~,O ---- --go-rr, O~ 

0";; '1- ln(t/3) R c-'~ ' 

~- t 2c~6 [ o.2 cos( O _ o )  _ o.l sin( O _ ~)] , 
o-r..1-~-- l n ( t /~ )  R -  ~'2 C1 

~ o. r~ -26 [o . l e ecos2 (O-a )  + o.2sin2(O a)] o'cea,1 ---- - - ~  O'rr ,1,  r r ,2  "~ - -  , 

aT,,2 = 26 0-2 cos 2(0 - a) - O-l~esin 2(0 - a , o-aa,z = -eo.rr,~- 

Let us pass over to a finite-difference solution. We expand the potentials, by analogy with (12), into a 
Fourier series in terms of the angle (0 - a) 

] ] :~ = ~ : ~ o s ~ ( 0 - ~ ) + : , ~ s i n n ( 0 - ~ ) ,  r = ~ r  (171 
u=0 n=0 

Then we have wave equations for each coefficient of the Fourier series (17): 

0 ~v n 1 0 ~ n  v ,'n 
b-~ -4\ ~--~7-2 +-~ 57,, 7 ~'~'' ' b-g =4k~+-~N 7r (18) 

After expansion into a Fourier series, the boundary conditions (3) will be the following: 

~:, :  = jol /~-(z, ,4~ " j ~o~ ~ + ~ , / ~ ,  ~ - - ~ / ~ , .  o~ o~ 

c r - l / 2  [ r 0c 0c s s j-1/2t'j u0S 

( r  = a~/sinh 2r + cos 2 y ) .  

Here u ~ os u0C 0c r un,n, r un.n are the Fourier series coefficients for the displacements in the incident wave. The 
system of equations (18) with boundary conditions (19) is solved by the finite difference method using an 
explicit scheme of the "cross" type. The steps of the difference grid are chosen under the Courant stability 
condition. In order to minimize the numerical variance, we assume that Clr = h~, c2~" = h,~, where r is the 
time step, h~, hr are the steps in space for the equations for the scalar and vector potentials of displacements, 
respectively. 

The major semi-axis of the ellipse (al = a cosh (0), propagation speed of longitudinal waves cl, and 
the density of the elastic medium p are taken as the measurement units of the distance, speed, and density. 

Figures 3-19 give plots of the distribution of stresses with the angle 7/at the moment of time t = 10 
and oscillograms of the stresses. The stresses were calculated in the reflected and diffraction waves at 0 = 0, 
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Fig. 3 Fig. 4 

v = 0.3. Different ratios of the ellipse axes were considered: a2 = 0.1, 0.5, 0.9 (a2 = asinhC0 is the minor 
semi-axis of the ellipse). The solid curves correspond to the finite-difference solution, and the dashed curves, 
to the asymptotic solution (16). 

Figures 3-11 present plots of the stresses occurring under the action of the longitudinal wave (al = - 1 ,  
a2 = 0). The calculation results at n = 0 are given in Figs. 3-6. The calculations were made at r = 0.1. 
It is seen that at n = 0, beginning from t ~> 10, the stresses coincide with the asymptotic solution (16) to 
the accuracy of plot drawing errors. The analysis of formulas (16) and Figs. 3-6 show that the following 
inequalities are satisfied for the incident longitudinal wave: 

Figures 7-9 illustrate the behavior of stresses at n = 1. As the calculations showed, at a2 = 0.9, 
beginning from t _~ 5, the finite-difference solution and the asymptotics coincide. If the minor semi-axis of 
the ellipse becomes smaller, the agreement between the asymptotics and the numerical calculation is achieved 
later. In particular, at a2 = 0.1 this is achieved even for t _ 10 (Fig. 9). As a2 decreases, one has to refine 
considerably the steps of the difference grid, in order to get the required accuracy in the finite-difference 
solution of the problem. For a2 = 0.9 it is sufficient to assume that r = 0.02, whereas for a2 = 0.1 the step 
~" = 0.005 does not permit computation to an acceptable accuracy in all the angle points. 

The calculation results at n = 2 are presented in Figs. 10 and 11. It is seen from comparison of the 
asymptotic and numerical solutions that the values of stresses at t > 2 remain constant in time and tend to 
the asymptotic values (16) as the steps of the difference grid are decreased. The calculations made at n = 3, 
4, 5 show that the amplitudes of perturbations approach zero at t _ 4. 

In the oscillograms of stresses (Figs. 5, 6, 9-11), the time of occurrence of perturbations corresponds 
to the time of arrival, at the given point r, of an axisymmetric longitudinal wave beginning to move at t = 0 
from the radius r = a: to the center of the ellipse. This time is determined from the formula t: = (a: - r ) /c : .  
The time of termination of the sharp peaks of perturbations corresponds to the arrival of the axisymmetric 
wave "reflected from the center" and is given by the formula t2 = (al + r) /c l .  

Figures 12-19 show the stresses calculated under the action of a shear wave (a: = 0, a2 = -1 ) ,  
Figs. 12-14 show the zero form, Figs. 15-19, the first form, and Figs. 18, 19, the second form. As in the case of 
action of a longitudinal wave, the oscillograms of stresses at t _ 10/c: practically coincide with the asymptotic 
solution for n = 0, 1, 2. The time of appearance of perturbations and the time of termination of sharp peaks 
of perturbations in oscillograms are determined from formulas similar to the case of a longitudinal wave, in 
which c2 is used instead of c:: 

tl ----- (al -- r)/c2, t2 = (al + r)/c2. 
Thus, the comparison of numerical and analytical solutions shows that at t _ 10/Cl the parameters of 

perturbations coincide with the asymptotic solution to high accuracy (16). 
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